Linear Algebra II

07/04/2014, Monday, 9:00-12:00

You are NOT allowed to use any type of calculators.

1 (15 pts)
Gram-Schmidt process

Consider the vector space P_{2} with the inner product

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) \mathrm{d} x
$$

Apply the Gram-Schmidt process to transform the basis $\left\{1, x, x^{2}\right\}$ into an orthonormal basis.

REQUIRED KNOWLEDGE: inner product, Gram-Schmidt process

SOLUTION:

To apply the Gram-Schmidt process, we first note that

$$
\begin{aligned}
\langle 1,1\rangle & =\int_{0}^{1} 1 \cdot 1 \mathrm{~d} x=\left.x\right|_{0} ^{1}=1 \\
\langle 1, x\rangle & =\int_{0}^{1} 1 \cdot x \mathrm{~d} x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=\frac{1}{2} \\
\left\langle 1, x^{2}\right\rangle & =\int_{0}^{1} 1 \cdot x^{2} \mathrm{~d} x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{3} \\
\langle x, x\rangle & =\int_{0}^{1} x \cdot x \mathrm{~d} x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{3} \\
\left\langle x, x^{2}\right\rangle & =\int_{0}^{1} x \cdot x^{2} \mathrm{~d} x=\left.\frac{x^{4}}{4}\right|_{0} ^{1}=\frac{1}{4} \\
\left\langle x^{2}, x^{2}\right\rangle & =\int_{0}^{1} x^{2} \cdot x^{2} \mathrm{~d} x=\left.\frac{x^{5}}{5}\right|_{0} ^{1}=\frac{1}{5}
\end{aligned}
$$

By applying the Gram-Schmidt process, we obtain:

$$
\begin{aligned}
u_{1}=\frac{1}{\|1\|} \\
u_{1}=1
\end{aligned} \begin{aligned}
& u_{1}=\frac{x-p_{1}}{\left\|x-p_{1}\right\|}=\langle x, 1\rangle \cdot 1 \\
&=\frac{1}{2} \\
& u_{1} \\
& x-p_{1}=x-\frac{1}{2} \\
&\left\|x-p_{1}\right\|^{2}=\left\langle x-\frac{1}{2}, x-\frac{1}{2}\right\rangle=\langle x, x\rangle-2 \cdot \frac{1}{2}\langle x, 1\rangle+\frac{1}{4}\langle 1,1\rangle \\
&\left\|x-p_{1}\right\|^{2}=\frac{1}{3}-\frac{1}{2}+\frac{1}{4}=\frac{1}{12} \\
&\left\|x-p_{1}\right\|=\frac{1}{2 \sqrt{3}} \\
& u_{2}=2 \sqrt{3}\left(x-\frac{1}{2}\right)
\end{aligned}
$$

$u_{3}=\frac{x^{2}-p_{2}}{\left\|x^{2}-p_{2}\right\|}$

$$
\begin{aligned}
p_{2} & =\left\langle x^{2}, 1\right\rangle \cdot 1+\left\langle x^{2}, 2 \sqrt{3}\left(x-\frac{1}{2}\right)\right\rangle \cdot 2 \sqrt{3}\left(x-\frac{1}{2}\right) \\
& =\left\langle x^{2}, 1\right\rangle+12\left\langle x^{2}, x-\frac{1}{2}\right\rangle\left(x-\frac{1}{2}\right) \\
& =\left\langle x^{2}, 1\right\rangle+12\left(\left\langle x^{2}, x\right\rangle-\frac{1}{2}\left\langle x^{2}, 1\right\rangle\right)\left(x-\frac{1}{2}\right) \\
& =\frac{1}{3}+12 \cdot\left(\frac{1}{4}-\frac{1}{6}\right)\left(x-\frac{1}{2}\right)=\frac{1}{3}+\left(x-\frac{1}{2}\right)=x-\frac{1}{6} \\
x^{2}-p_{2} & =x^{2}-x+\frac{1}{6} \\
\left\|x^{2}-p_{2}\right\|^{2} & =\left\langle x^{2}, x^{2}\right\rangle+\langle x, x\rangle+\frac{1}{36}\langle 1,1\rangle-2\left\langle x^{2}, x\right\rangle+2 \cdot \frac{1}{6}\left\langle x^{2}, 1\right\rangle-2 \cdot \frac{1}{6}\langle 1, x\rangle \\
\left\|x^{2}-p_{2}\right\|^{2} & =\frac{1}{5}+\frac{1}{3}+\frac{1}{36}-2 \cdot \frac{1}{4}+\frac{1}{3} \cdot \frac{1}{3}-\frac{1}{3} \cdot \frac{1}{2}=\frac{1}{180} \\
\left\|x^{2}-p_{2}\right\| & =\frac{1}{6 \sqrt{5}}
\end{aligned}
$$

$u_{3}=6 \sqrt{5}\left(x^{2}-x+\frac{1}{6}\right)$.
(a) Consider the matrix

$$
M=\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]
$$

Find real numbers a and b such that $(M-a I)(M-b I)=0$.
(b) Consider the matrix

$$
M=\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

Find real numbers a and b such that $(M-a I)(M-b I)=0$.

REQUIRED KNOWLEDGE: Cayley-Hamilton theorem

SOLUTION:

(2a): The characteristic polynomial of M can be found as

$$
\operatorname{det}(\lambda I-M)=\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 2 \\
4 & 3-\lambda
\end{array}\right]\right)=(1-\lambda)(3-\lambda)-8=\lambda^{2}-4 \lambda-5=(\lambda+1)(\lambda-5)
$$

Cayley-Hamilton theorem implies that

$$
(M+I)(M-5 I)=0
$$

As such, one can take $a=-1$ and $b=5$.
(2b): For this case, the characteristic polynomial of M can be found as

$$
\operatorname{det}(\lambda I-M)=\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 1 \\
-1 & 1-\lambda
\end{array}\right]\right)=(1-\lambda)^{2}+1=\lambda^{2}-2 \lambda+2=(\lambda-1-i)(\lambda-1+i)
$$

Suppose that a and b are real numbers satisfying

$$
(M-a I)(M-b I)=M^{2}-(a+b) M+a b I=0
$$

From Cayley-Hamilton theorem, we know that

$$
M^{2}-2 M+2 I=0
$$

Subtracting the last two, we get

$$
(2-a-b) M+(a b-2) I=0
$$

Since M and I are linearly independent, we have

$$
a+b=2 \quad \text { and } \quad a b=2
$$

In other words, a and b are the roots of the polynomial $x^{2}-2 x+2$. Since this polynomial has only complex roots $(1 \pm i)$, there are no real values a and b such that $(M-a I)(M-b I)=0$.

Consider the matrix

$$
M=\left[\begin{array}{rr}
3 & 2 \\
2 & 3 \\
2 & -2
\end{array}\right] .
$$

(a) Show that the singular values of M are $\sigma_{1}=5$ and $\sigma_{2}=3$.
(b) Find a singular value decomposition for M.
(c) Find the best rank 1 approximation of M.

REQUIRED KNOWLEDGE: singular value decomposition, lower rank approximations.

Solution:

(3a):
Note that

$$
M^{T} M=\left[\begin{array}{cc}
17 & 8 \\
8 & 17
\end{array}\right]
$$

Then, the characteristic polynomial of $M^{T} M$ can be found as

$$
\begin{aligned}
p_{M^{T} M}(\lambda) & =\operatorname{det}\left(\left[\begin{array}{cc}
17-\lambda & 8 \\
8 & 17-\lambda
\end{array}\right]\right) \\
& =(\lambda-17)^{2}-8^{2}=(\lambda-25)(\lambda-9)
\end{aligned}
$$

Then, the eigenvalues of $M^{T} M$ are given by

$$
\lambda_{1}=25 \quad \text { and } \quad \lambda_{2}=9
$$

and hence the singular values by

$$
\sigma_{1}=5 \quad \text { and } \quad \sigma_{2}=3
$$

(3b):
Next, we need to diagonalize $M^{T} M$ in order to obtain the orthogonal matrix V. To do so, we first compute eigenvectors of $M^{T} M$.

For the eigenvalue $\lambda_{1}=25$, we have

$$
0=\left(M^{T} M-25 I\right) x=\left[\begin{array}{rr}
-8 & 8 \\
8 & -8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

This results in the following eigenvector

$$
v_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

For the eigenvalue $\lambda_{2}=9$, we have

$$
0=\left(M^{T} M-9 I\right) x=\left[\begin{array}{ll}
8 & 8 \\
8 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

This results, for instance, in the following eigenvector

$$
v_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

Hence, we get

$$
V=\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right] .
$$

Note that the rank of M is equal to the number of nonzero singular values. Thus, $r=\operatorname{rank}(M)=2$. By using the formula

$$
u_{i}=\frac{1}{\sigma_{i}} M v_{i}
$$

for $i=1,2$, we obtain

$$
\begin{aligned}
& u_{1}=\frac{1}{5}\left[\begin{array}{rr}
3 & 2 \\
2 & 3 \\
2 & -2
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& u_{2}=\frac{1}{3}\left[\begin{array}{rr}
3 & 2 \\
2 & 3 \\
2 & -2
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\frac{1}{3 \sqrt{2}}\left[\begin{array}{r}
1 \\
-1 \\
4
\end{array}\right] .
\end{aligned}
$$

The last column vector of the matrix U can be found by looking at the null space of M^{T} :

$$
\left[\begin{array}{rrr}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=0
$$

This yields

$$
u_{3}=\frac{1}{3}\left[\begin{array}{r}
-2 \\
2 \\
1
\end{array}\right]
$$

Finally, the SVD can be given by:

$$
\left[\begin{array}{rr}
3 & 2 \\
2 & 3 \\
2 & -2
\end{array}\right]=\left[\begin{array}{rrr}
\frac{1}{\sqrt{2}} & \frac{1}{3 \sqrt{2}} & -\frac{2}{3} \\
\frac{1}{\sqrt{2}} & -\frac{1}{3 \sqrt{2}} & \frac{2}{3} \\
0 & \frac{4}{3 \sqrt{2}} & \frac{1}{3}
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{rr}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right] .
$$

(3c):
The best rank 1 approximation can be obtained as follows:

$$
\tilde{M}=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{3 \sqrt{2}} & -\frac{2}{3} \\
\frac{1}{\sqrt{2}} & -\frac{1}{3 \sqrt{2}} & \frac{2}{3} \\
0 & \frac{4}{3 \sqrt{2}} & \frac{1}{3}
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{rr}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{5}{\sqrt{2}} & 0 \\
\frac{5}{\sqrt{2}} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{rr}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{5}{2} & \frac{5}{2} \\
\frac{5}{2} & \frac{5}{2} \\
0 & 0
\end{array}\right] .
$$

Let A be an $n \times n$ matrix.
(a) Let λ be a real eigenvalue of A. Show that

$$
\sigma_{n} \leqslant|\lambda| \leqslant \sigma_{1}
$$

where σ_{1} and σ_{n} are the largest and the smallest singular values of A, respectively.
(b) Suppose that A is symmetric. Show that $|\lambda|$ is a singular value of A if λ is an eigenvalue of A.

REQUIRED KNOWLEDGE: eigenvalues and singular values.

Solution:

(4a):
Let (λ, x) be an eigenpair of A, that is

$$
A x=\lambda x .
$$

Let $A=U \Sigma V^{T}$ be a singular value decomposition of A. Note that

$$
\left\|U \Sigma V^{T} x\right\|_{F}=|\lambda|\|x\|_{F}
$$

Note that if Q is an orthogonal matrix $\|Q v\|_{F}=\|v\|_{F}$ for all v. Then, we have

$$
\left\|U \Sigma V^{T} x\right\|_{F}=\left\|\Sigma V^{T} x\right\|_{F} \quad \text { and } \quad\|x\|_{F}=\left\|V^{T} x\right\|_{F}
$$

Let $y=V^{T} x$. Then, we get

$$
\|\Sigma y\|_{F}=|\lambda|\|y\|_{F}
$$

Further, let $y=\left[\begin{array}{llll}y_{1} & y_{2} & \cdots & y_{n}\end{array}\right]^{T}$. Then, we have

$$
|\lambda|^{2}=\frac{\sigma_{1}^{2} y_{1}^{2}+\sigma_{2}^{2} y_{2}^{2}+\cdots+\sigma_{n}^{2} y_{n}^{2}}{y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}}
$$

Since $\sigma_{1} \geqslant \sigma_{2} \geqslant \cdots \geqslant \sigma_{n}$, we get

$$
\frac{\sigma_{1}^{2} y_{1}^{2}+\sigma_{1}^{2} y_{2}^{2}+\cdots+\sigma_{1}^{2} y_{n}^{2}}{y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}} \geqslant|\lambda|^{2} \geqslant \frac{\sigma_{n}^{2} y_{1}^{2}+\sigma_{n}^{2} y_{2}^{2}+\cdots+\sigma_{n}^{2} y_{n}^{2}}{y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}}
$$

Consequently, we obtain

$$
\sigma_{1} \geqslant|\lambda| \geqslant \sigma_{2}
$$

(4b):
Note that if λ is an eigenvalue of A then λ^{2} is an eigenvalue of A^{2}. Since A is symmetric, we know that $A^{2}=A^{T} A$ and its eigenvalues are real. Therefore, $|\lambda|$ is a singular value of A.
(a) Consider the function

$$
f(x, y)=x^{3}+y^{3}-3 x y .
$$

Find the stationary points of f and determine whether its stationary points are local minimum/maximum or saddle points.
(b) Let

$$
M=\left[\begin{array}{rrr}
a & -a & 0 \\
-a & b & a \\
0 & a & a
\end{array}\right]
$$

where a and b are real numbers. Determine all values of a and b for which M is positive definite.

REQUIRED KNOWLEDGE: stationary points, positive definiteness.

Solution:

(5a): In order to find the stationary points, we need the partial derivatives:

$$
f_{x}=3 x^{2}-3 y \quad \text { and } \quad f_{y}=3 y^{2}-3 x
$$

Then, (\bar{x}, \bar{y}) is a stationary point if and only if

$$
\begin{aligned}
& 3 \bar{x}^{2}-3 \bar{y}=0 \\
& 3 \bar{y}^{2}-3 \bar{x}=0
\end{aligned}
$$

This leads to $\bar{x}^{4}=\bar{x}$, or equivalently $\bar{x}\left(\bar{x}^{3}-1\right)=0$. Hence, we have $\bar{x}=0$ or $\bar{x}=1$ since $\bar{x}^{3}-1=(\bar{x}-1)\left(\bar{x}^{2}+\bar{x}+1\right)$. Then, the stationary points are $(\bar{x}, \bar{y})=(0,0)$ or $(\bar{x}, \bar{y})=(1,1)$. To determine the character of these points, we need the second order partial derivatives:

$$
f_{x x}=6 x, \quad f_{x y}=-3, \quad \text { and } \quad f_{y y}=6 y
$$

For the stationary point $(\bar{x}, \bar{y})=(0,0)$, we have

$$
H_{(0,0)}=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right]_{(0,0)}=\left[\begin{array}{rr}
0 & -3 \\
-3 & 0
\end{array}\right]
$$

Note that the characteristic polynomial of the Hessian matrix $H_{(0,0)}$ is given by $\lambda^{2}-9$. Hence, it has one positive $\left(\lambda_{1}=3\right)$ and one negative eigenvalue $\left(\lambda_{2}=-3\right)$. Therefore, $H_{(0,0)}$ is indefinite and the stationary point $(\bar{x}, \bar{y})=(0,0)$ is a saddle point.

For the stationary point $(\bar{x}, \bar{y})=(1,1)$, we have

$$
H_{(1,1)}=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right]_{(1,1)}=\left[\begin{array}{rr}
6 & -3 \\
-3 & 6
\end{array}\right]
$$

Note that the characteristic polynomial of the Hessian matrix $H_{(1,1)}$ is given by $(\lambda-6)^{2}-9$. Hence, it has two positive eigenvalues $\lambda_{1}=9$ and $\lambda_{2}=3$. This means that $H_{(1,1)}$ is positive definite. Consequently, stationary point $(\bar{x}, \bar{y})=(1,1)$ corresponds to a local minimum.
(5b): A symmetric matrix is positive definite if and only if all its leading principal minors are positive. Note that the leading principal minors of M are given by:
$\operatorname{det}(a), \quad \operatorname{det}\left(\left[\begin{array}{rr}a & -a \\ -a & b\end{array}\right]\right)=a b-a^{2}, \quad$ and $\quad \operatorname{det}\left(\left[\begin{array}{rrr}a & -a & 0 \\ -a & b & a \\ 0 & a & a\end{array}\right]\right)=a\left(a b-a^{2}\right)-a^{3}=a^{2} b-2 a^{3}$.

Then, the matrix M is positive definite if and only if

$$
a>0, \quad a b-a^{2}>0, \quad \text { and } \quad a^{2} b-2 a^{3}>0
$$

This is, however, equivalent to saying that

$$
a>0, \quad b-a>0, \quad \text { and } \quad b-2 a>0 .
$$

Note that the inequality in the middle is implied by the last one. Hence, we can conclude that the matrix M is positive definite if and only if

$$
a>0 \quad \text { and } \quad b>2 a .
$$

Consider the matrix

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(a) Find the eigenvalues of A.
(b) Is A diagonalizable? Why?
(c) Put A into the Jordan canonical form.

REQUIRED KNOWLEDGE: eigenvalues/vectors, Jordan canonical form, diagonalization.

SOLUTION:

(6a): Note that A is upper triangular. As such, the eigenvalues can be read from the diagonal $\lambda_{1,2,3,4}=1$.
(6b): It is diagonalizable if and only if it has 4 linearly independent eigenvectors. To find the eigenvectors, we need to solve the equation $(A-I) x=0$:

$$
\left[\begin{array}{rrrr}
0 & 0 & 1 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=0
$$

This leads to $x_{3}=x_{4}=0$. Thus, eigenvectors of A must be of the form

$$
x=\alpha\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\beta\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] .
$$

This means that we can find at most two linearly independent eigenvectors. Therefore, A is not diagonalizable.
(6c): Since there are at most two linearly independent eigenvectors, Jordan canonical form consists of two blocks of sizes $3+1$ or $2+2$. Note that

$$
(A-I)^{2}=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { and } \quad(A-I)^{3}=0
$$

Next, we check if

$$
(A-I)^{2} v=x
$$

has a solution where x is an eigenvector. Note that

$$
(A-I)^{2} v=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{c}
v_{4} \\
v_{4} \\
0 \\
0
\end{array}\right]=v_{4}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+v_{4}\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] .
$$

Hence, we have

$$
(A-I)^{2}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

This means that

$$
\left\{\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right],(A-I)\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right],(A-I)^{2}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}=\left\{\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]\right\}
$$

would generate a cyclic subspace. Thus, we can conclude that Jordan canonical form consists of two blocks of sizes $3+1$. Finally, we need to choose an eigenvector that is not linearly dependent to $\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right]^{T}$. This is achieved, for instance, by the eigenvector

$$
\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Then, we have

$$
\underbrace{\left[\begin{array}{lllr}
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{rrrr}
1 & -1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{T}=\underbrace{\left[\begin{array}{rrrr}
1 & -1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{T} \underbrace{\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}_{J} .
$$

